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Abstract
We present a theoretical study of the damping phenomenon in a device of
coupled quantum dots, in the context of quantum computation. We derive the
one-phonon contribution to the damping rate, based on Fermi’s golden rule,
for the case where the device lies in the super-Ohmic regime. The result is
in agreement with that of Leggett et al derived within the noninteracting blip
approximation (NIBA). Moreover, we consider the multi-phonon contribution
to damping according to Würger, and estimate the temperature range for the
coupled dots to operate as a qubit device. A threshold temperature T ∗, 18 K, is
determined, above which the tunnelling time becomes longer than the damping
time.

1. Introduction

Quantum computation has been an emerging field during the last decade. In this field, people
hope to build a new generation computer, a quantum computer, by the principle of quantum
mechanics. The basic unit of a quantum computer is called a quantum bit (qubit) expressing
states ‘0’ or ‘1’. Because of the superposition principle, a qubit can take on 0 and 1 states
simultaneously.

There are many proposals to construct a qubit device, such as SQUIDs [1], nuclear
spins [2], ion traps [3] and quantum dots [4]. An important issue is that a qubit state does
not last forever when a qubit is coupled with the environment. This phenomenon is called
‘damping,’ and damping time (the time it takes for the state to relax) determines whether a
qubit state lives long enough for an operation to execute in a pre-set timescale.

The present work focuses on a theoretical study of the damping phenomenon in the device
of coupled quantum dots embedded in the oxide layer of a metal–oxide–semiconductor (MOS)
proposed by Tanamoto [4]. Each pair of coupled dots forms a qubit, with 0 (1) corresponding to
the state where the electron is confined in one (the other) dot, and can be used to implement the
fundamental quantum gate, the controlled-not-gate. This proposal has two advantages. Firstly,
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it uses the mature Si technology. This solves the ‘scale-up’ problem in the case of nuclear spins
or ion traps. Secondly, generally speaking, solid state devices allow one to easily read and
write qubit information through voltage gates, for example. However, the second advantage
is earned only at a price. Because the coupled dots are embedded in SiO2, there are a large
number of background phonons in the vicinity of the electron. These phonons interact with the
electron and cause damping of the electron state. Therefore, it is always important to check the
damping rate in the case of a solid state qubit device. Tanamoto has estimated the damping rate
based on the theoretical expression of Leggett et al [5]. The present work tries to improve the
estimate in the two following respects. Firstly, we derive explicitly the one-phonon contribution
to damping rate, based on the Fermi golden rule. This permits an estimate of the rate at low
temperatures. Secondly, we consider the multi-phonon contribution to damping according to
Würger [6], and also obtain a high-temperate estimate.

2. Fermi’s golden rule approach

2.1. Description of the problem

In insulated materials, acoustic phonons provide the most important damping mechanism. The
phonon bath spectrum is defined as

J (ω) ≡ (π/2)
∑

q

|λq |2δ(ω − ωq). (1)

Equation (1) accounts for various situations in solid-state physics. We work within the Debye
model and, after summing over q , the phonon bath spectrum then obeys a cubic law [6]

J (ω) = παω3 (2)

where the dimension of the coupling constant α is (frequency)−2. It is related to material
constants through

α = 1

2π2h̄ρ

(
γ 2

l

v5
l

+ 2γ 2
t

v5
t

)
≡ 1

2π2h̄ρ

3γ 2

v5
(3)

where v and γ are appropriate average values of transverse and longitudinal sound velocities,
vt and vl, and deformation potentials γt and γl, respectively. ρ is the mass density of the solid.
(2) means that the device lies in the so-called super-Ohmic region [5], where J (ω) ∼ ωs with
s > 1. We also take the energy levels of two dots to coincide, so that we may use a simplified
physical model, i.e. the symmetric structure of coupled dots, as shown in figure 1. This is
appropriate for understanding the switch of the qubit state between 0 and 1.

We write down our Hamiltonian, which describes the coupled quantum dots

H =
∑

q

(
a+

q aq + 1

2

)
h̄ωq − h̄

2
�b(C

+
l Cr + C+

r Cl) +
∑

q

λq

2
(C+

r Cr − C+
l Cl)(a

+
−q + aq)

(4)

where phonon operators obey bosonic commutation relations [ai , a+
j ] = δi j , and electron

operators satisfy fermionic commutation relations {Ci , C+
j } = δi j . �b is the bare electron

tunnelling frequency. (Here, ‘bare’ means that the electron uncouples with phonons.) λq

is the electron–phonon coupling constant, which is proportional to the inverse of the root of
the system volume. (4) describes the well known spin-boson problem [5]. There are various
approaches to calculate the damping time of this system, such as NIBA [5, 7], strong-coupling
theory [6], and perturbation theory [8]. Although Leggett et al [5] demonstrate that the Fermi
golden rule is inadequate for the calculation in the case where J (ω) ∼ ωs with s > 2, we shall
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Figure 1. Simplified model of the coupled quantum dots. An electron tunnels back and forth
between right and left quantum dots.

show that, switching to different unperturbed eigenfunctions, the damping rate with explicitly
only one-phonon contribution can be obtained within the golden rule. Moreover, the result
agrees with that of Leggett et al [5] derived within the approximation NIBA. Roughly speaking,
they calculated the probability p(t) for an electron to go back to the dot where it sits initially,
which is given by the following double path integral:

p(t) =
∫

D[x(τ )]
∫

D[y(τ ′)]A[x(τ )]A∗[y(τ ′)]F[x(τ ), y(τ ′)],
where

∫
D[x(τ )]A[x(τ )] is the corresponding probability amplitude in the absence of

electron–environment interaction, and F is the influence functional accounting for the
interaction. x(τ ) (or y(τ )) denotes the position of the electron as a function of time, which, in
the case of double dots, can take only two discrete values, e.g. 0 and 1, corresponding to the left
and right dots, respectively. They showed that a certain contribution to p(t) involves products
of the blip function B

B(τ )B(s) =
n∑

1

b j [
(τ − t2 j−1)−
(τ − t2 j)]
n∑

1

bk[
(s − t2k−1)−
(s − t2k)].

In such a case they showed that only those with j = k (the same blip) in the product are
important, and they made the approximation where the ones with j �= k were thrown away,
hence called the noninteracting blip approximation. The result of Leggett et al is not easily
accessible to interpretation as consisting of only a one-phonon contribution. We now describe
our derivation via a different approach, in the following.

2.2. Break of the Hamiltonian

We show how to break the Hamiltonian into an unperturbed part and the perturbation. Since
SiO2 is a polar material, an electron in SiO2 will attract a large number of phonons in the
vicinity. The polaron concept [9] is used to describe the electron dragging a large number of
phonons, and the standard method to tackle this problem is the canonical transformation to
localized polaron basis [10]

H̄ = eS H e−S. (5)

With

S = −
∑

q

(λq/2)

ωq
(C+

r Cr − C+
l Cl)(aq − a+

−q) (6)
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we have

H̄ =
∑

q

(
a+

q aq + 1

2

)
h̄ωq −

∑

q

|λq/2|2
ωq

− h̄�b

2
(C+

l Cr X + C+
r Cl X

−1) (7)

where

X = exp

[∑

q

λq

ωq
(aq − a+

−q)

]
. (8)

Note that X† = X−1 and λ∗
q = λ−q .

Next, we change localized electron operators of (7) to the delocalized operators

C+
s = (C+

l + C+
r )/

√
2 (9)

C+
a = (C+

l − C+
r )/

√
2 (10)

corresponding to symmetric and anti-symmetric states, which gives

H̄ =
∑

q

(
a+

q aq + 1

2

)
h̄ωq −

∑

q

( |λq/2|2
ωq

)
− h̄�b

4
(C+

s Cs − C+
a Ca)(X + X−1)

− h̄�b

4
(C+

a Cs − C+
s Ca)(X − X−1). (11)

To break the Hamiltonian, we re-write the operator in the last term by inserting a complete set
|i, nq〉; i = s, a twice, i.e. A = ∑

a′′
∑

a′ |a′′〉〈a′′|A|a′〉〈a′|. Then, we separate diagonal and
nondiagonal parts of the matrix. After these two steps, (11) becomes

H̄ = H0 + V1 + V2. (12)

The first term is the unperturbed Hamiltonian

H0 =
∑

q

(
a+

q aq + 1

2

)
h̄ωq −

∑

q

|λq/2|2
ωq

− h̄�b

4

∑

nq

〈nq |X

+ X−1|nq〉(|s, nq〉〈s, nq | − |a, nq〉〈a, nq |) (13)

and the last two terms together represent the perturbation

V1 = − h̄�b

4
(C+

a Cs − C+
s Ca)(X − X−1) (14)

V2 = − h̄�b

4

∑

nq ,n′
q

nq �=n′
q

〈n′
q |X + X−1|nq〉(|s, n′

q 〉〈s, nq | − |a, n′
q〉〈a, nq |). (15)

Thus, our unperturbed eigenstates are the symmetric and anti-symmetric polaron states plus
free phonons.

Note that Leggett et al [5] show that, if localized polarons are used as unperturbed states,
the golden rule does not yield the correct damping rate in the case J (ω) ∼ ωs with s > 2.
However, in contrast, we have changed the localized states to extended (symmetric and anti-
symmetric) ones, and (12) describes the situation where the extended electron state, due
to its interaction with the environment (as represented by the perturbation), will lose phase
coherence.
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2.3. One-phonon damping rate

At a low temperature where there are only a few phonons in the system, the one-phonon
process dominates the transition between symmetric and antisymmetric states, with the phonon
occupation number only changing by one during the transition. In the following, we show how
to derive the one-phonon contribution to the damping rate. Firstly, note that since

V1 ∝ (C+
a Cs − C+

s Ca)(X − X−1) ∝ (C+
a Cs − C+

s Ca)

(∑

q

(λq/ωq)(aq − a+
−q)

)n

where n = odd, V1 contributes to the one-phonon transition. On the other hand,

V2 ∝
∑

〈n′
q |X + X−1|nq〉(|s, n′

q〉〈s, nq | − |a, n′
q〉〈a, nq |)

∝
∑

〈n′
q |

(∑

q

(λq/ωq)(aq − a+
−q)

)n

|nq〉(|s, n′
q 〉〈s, nq | − |a, n′

q〉〈a, nq |)

where n = even, and so V2 does not enter the calculation of the one-phonon damping rate.
Fermi’s golden rule gives the damping rate of the state i as

�i = (2π/h̄)
∑

f �=i

|V f i |2δ(E f − Ei) (16)

whose inverse is the damping time

τi = 1

�i
. (17)

According to (13), our initial and final unperturbed states and energy are, respectively,

∣∣s, ni
q

〉
, Es,ni

q
= h̄

(∑

q

(
ni

q
+ 1

2

)
ωq − �b

4
〈ni

q
|X + X−1|ni

q
〉
)

−
∑

q

|λq/2|2
ωq

(18)

∣∣a, n f
q

〉
, Ea,n f

q
= h̄

(∑

q

(
n f

q
+ 1

2

)
ωq + �b

4
〈n f

q
|X + X−1|n f

q
〉
)

−
∑

q

|λq/2|2
ωq

. (19)

Substituting equations (14), (18), and (19) into (16), we obtain the damping rate of the
symmetric state, due to its transition to the anti-symmetric state,

�(odd)
s = 2π

∑

n f
q

[(
�b

4

)2

|〈n f
q |X − X−1|ni

q〉|2

× δ

(∑

q

n f
q ωq −

∑

q

ni
qωq + �b

4
〈n f

q |X + X−1|n f
q 〉

+ �b

4
〈ni

q |X + X−1|ni
q〉

)]
(20)

that of the antisymmetric state can be similarly calculated. Using the identity∫ ∞
−∞ dt exp(i f t) = 2πδ( f ) in (20), we obtain

�(odd)
s =

∫ ∞

−∞
dt

∑

n f
q

(
�b

4

)2

ei
�b
4 [〈n f

q |X+X−1|n f
q 〉+〈ni

q |X+X−1|ni
q〉]t

× 〈ni
q |(X−1 − X)|n f

q 〉〈n f
q |(X (t) − X−1(t))|ni

q〉 (21)

where

X (t) = exp

[∑

q

λq

ωq
(e−iωq t aq − eiωq t a+

−q)

]
. (22)
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Now, we extract, from (21), the one-phonon process

�(1)
s = term1 + term2 (23)

where

term1 =
∫ ∞

−∞
dt

∑

q

(
�b

4

)2

ei
�b
4 [〈n−1|X+X−1|n−1〉+〈n|X+X−1|n〉]t

× 〈n|(X−1 − X)|n − 1〉〈n − 1|(X (t) − X−1(t))|n〉 (24)

and

term2 =
∫ ∞

−∞
dt

∑

q

(
�b

4

)2

ei
�b
4 [〈n+1|X+X−1|n+1〉+〈n|X+X−1|n〉]t

× 〈n|(X−1 − X)|n + 1〉〈n + 1|(X (t) − X−1(t))|n〉 (25)

with the symbol n replacing ni
q for the sake of abbreviation. Next, we discuss how to

calculate (24), and (25) can be done in a similar way. In (24), the matrix elements are evaluated
as below

〈n − 1|X + X−1|n − 1〉 = 2e−|uq |2/2[Lni
q−1(|uq |2)]

[
∏

q ′ �=q

e−|uq′ |2/2 Lni
q′ (|uq ′ |2)

]
(26)

〈n|X + X−1|n〉 = 2
∏

q ′
e−|uq′ |2/2 Lni

q′ (|uq ′ |2) (27)

〈n|X−1 − X |n − 1〉〈n − 1|X(t) − X−1(t)|n〉 = 4

{
(e−iωq t e−|uq |2 |uq |2)

(
1

ni
q

)

× [
L(1)

ni
q−1(|uq|2)

]2
}{∏

q ′ �=q

[e−|uq′ |2/2 Lni
q′ (|uq ′ |2)]2

}
(28)

where uq ≡ λq/ωq ∝ λq ∝ 1/
√

V , V is the system volume, Ln−1 and Ln are Laguerre
polynomials of order n −1 and n, respectively, and L(1)

n−1 is an associated Laguerre polynomial.
Note that |uq|2 ∝ 1/V , and so in the thermodynamic limit we only need to retain the linear
term of |uq |2. In (24), expanding the exponential term, substituting the expressions from
equations (26)–(28), and keeping up to the linear terms of |uq |2, it becomes

term1 =
∫ ∞

−∞
dt

(
�b

4

)2 ∑

q

{
4(e−iωq t |uq |2)ni

q

[∏

q ′
e−|uq′ |2/2 Lni

q′ (|uq ′ |2)
]2

+ 4(e−iωq t |uq |2)ni
q

[∏

q ′
e−|uq′ |2/2 Lni

q′ (|uq ′ |2)
]3

(i�bt)

+ 4(e−iωq t |uq |2)ni
q

[∏

q ′
e−|uq′ |2/2 Lni

q′ (|uq ′ |2)
]4

(i�bt)2

2
+ · · · ·

}
. (29)

Next, we take the thermal average of (29) with respect to the phonon bath as follows. Note
firstly that, in the thermodynamic limit, the linear term of |uq ′ |2 in Lni

q′ gives
〈[∏

q ′
e−|uq′ |2/2 Lni

q′ (|uq ′ |2)
]x〉

e

=
〈∏

q ′
e−x|uq′ |2/2(1 − x |uq ′ |2ni

q ′)

〉

e

=
∏

q ′
e−x|uq′ |2/2(1 − x |uq ′ |2 Nq ′ )
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where 〈A〉e = trB(Ae−βa+
q aqωq )/Z denotes the thermal average, Z = ∏

q 1/(1 − e−βωq ),
Nq = 〈nq〉e = 1/(eβh̄ωq −1) and x = 2, 3, 4, . . .. Moreover, making the customary exponential
approximation, the last expression becomes
〈[∏

q ′
e−|uq′ |2/2 Lni

q′ (|uq ′ |2)
]x〉

e

≈
[∏

q ′
e−|uq′ |2/2e−|uq′ |2 Nq′

]x

=
[∏

q ′
e

−|uq′ |2
2 (2Nq′+1)

]x

. (30)

Now, inserting the above result in the thermal average of (29), it gives

〈term1〉e ≈
∫ ∞

−∞
dt

(
�b

4

)2 ∑

q

{
4(e−iωq t |uq |2)Nq

[∏

q ′
e

−|uq′ |2
2 (2Nq′+1)

]2

+ 4(e−iωq t |uq |2)Nq

[∏

q ′
e

−|uq′ |2
2 (2Nq′+1)

]3

(i�bt)

+ 4(e−iωq t |uq |2)Nq

[∏

q ′
e

−|uq′ |2
2 (2Nq′+1)

]4
(i�bt)2

2
+ · · · · · ·

}
. (31)

The above expression can be rewritten in a condensed form as follows. We introduce

�̃ ≡ �be−ST (32)

where

e−ST =
∏

q ′
e

−|uq′ |2
2 (2Nq′+1) = exp

[∑

q ′

−|uq ′ |2
2

coth

(
h̄ωq

kBT

)]
(33)

(32) is the reduced tunnelling frequency [5, 6] and (33) is the Debye–Waller factor [10].
Arranging (31) in the form of (32), we obtain

〈term1〉e ≈
∫ ∞

−∞
dt

(
�̃

2

)2 ∑

q

|uq |2 Nq e−iωq t ei�̃t . (34)

Similarly, the thermal average of term 2 of (23) is

〈term2〉e ≈
∫ ∞

−∞
dt

(
�̃

2

)2 ∑

q

|uq |2(Nq + 1)eiωq t ei�̃t . (35)

With equations (34) and (35), (23) becomes

〈�(1)
s 〉e = 〈term1〉e + 〈term2〉e ≈

∫ ∞

−∞
dt

(
�̃

2

)2 ∑

q

[|uq|2 Nq ei(�̃−ωq )t

+ |uq |2(Nq + 1)ei(�̃+ωq )t ]. (36)

After integrating (36) with respect to time, we obtain the one-phonon damping rate of the
symmetric state

〈�(1)
s 〉e ≈

(
�̃

2

)2

2π
∑

q

[|uq|2 Nqδ(�̃ − ωq) + |uq |2(Nq + 1)δ(�̃ + ωq)]. (37)

Following the same steps as above, that of the anti-symmetric state is

〈�(1)
a 〉e ≈

(
�̃

2

)2

2π
∑

q

[|uq|2 Nqδ(�̃ + ωq) + |uq |2(Nq + 1)δ(�̃ − ωq)]. (38)
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Defining the average one-phonon damping rate as

〈�(1)〉e ≡ 〈�(1)
s 〉e + 〈�(1)

a 〉e

2
(39)

we obtain

〈�(1)〉e ≈
(

�̃

2

)2

π
∑

q

[
|uq |2(δ(�̃ + ωq) + δ(�̃ − ωq)) coth

(
h̄ωq

2kBT

)]
(40)

where we have used 2Nq + 1 = coth(βh̄ωq/2). Because of energy conservation, the first delta
function in the bracket has no contribution, and so

〈�(1)〉e ≈
(

�̃

2

)2

π
∑

q

[ |λq |2
ω2

q

δ(�̃ − ωq) coth

(
h̄ωq

2kBT

)]
. (41)

In terms of the spectrum function defined in (1), we obtain, finally,

〈�(1)〉e ≈ 1

2
J (�̃) coth

(
h̄�̃

2kBT

)
. (42)

Note that (42) is identical with the result derived by Leggett et al [5] in the case where
J (ω) ∼ ωs with s > 2, within the NIBA. The advantage of our approach is that, unlike the
NIBA, the physical picture is clear. We see that the damping mechanism as described in (42)
is entirely due to the one-phonon-induced transition between the symmetric and antisymmetric
states. Also note that, because the multi-phonon transition becomes important with increasing
temperature [6–8], the damping rate derived in this section is actually underestimated in the
high temperature range.

3. Estimate of damping time

Firstly, we introduce the following useful mathematical result [6, 10] for the reduced tunnelling
frequency:

�̃ = �0 exp(−ϕ0/6) (43)

where

�0 ≡ �b exp(−αω2
D/2) (44)

ϕ0 ≡ T 2

T 2
0

= 2α

(
π

βh̄

)2

(45)

T0 ≡ h̄(πkB

√
2α). (46)

The above result is obtained by carrying out the wavevector summation in (33) and putting it
back in (32), expressing the reduced tunnelling frequency in terms of physical parameters of
the system. It will be needed in the following numerical estimation.

3.1. Zero temperature

From equations (42) and (2), the damping rate at zero temperature is

〈�(1)〉e ≈ 1
2πα�̃3 (47)

where �̃ = �0. With the material parameters quoted in table 1 for SiO2, the damping time at
zero temperature is τ = 1/〈�(1)〉e ∼ 6.5×10−5 (s), and the tunnelling time at zero temperature
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Table 1. Parameters for SiO2 [6].

ρ = Mass density = 2200 (kg m−3)

�0 = Reduced tunnelling frequency (at T = 0) ≈ 4.58 × 109 (s−1)


 = Debye temperature ≈ 450 (K)

ωD = Debye frequency ≡ kB

h ≈ 5.89 × 1013 (s−1)

vl,t = Longitudinal/transverse sound velocity ≈ 5800/3800 (m s−1)

γ = Average deformation potential ≈ 2.6 (eV)

From the above parameters, we obtain
(i) Coupling constant α = 1.01 × 10−25 (s2) according to (3).
(ii) Temperature scale T0 = 5.4 (K) according to (46).

is �−1
0 ∼ 2.2 × 10−10 (s). This means that the qubit device can switch between 0 and 1 about

105 times before appreciable damping occurs.
The damping time estimated above is longer than that of Tanamoto [4], 4.8 × 10−7 (s),

for the following reason. Firstly, the parameters of [6] are used in the present work, which
are different from Tanamoto’s. Secondly, Tanamoto uses the bare frequency �b in place of
the reduced frequency �0, for lack of available data, which overestimates �0 and hence the
damping rate.

3.2. Damping time versus temperature

In this section, we discuss the damping time versus temperature, based on Würger’s work [6].
At low temperatures where T � T0 (with T0 the temperature scale defined in (46)), the damping
rate is [6]

〈�t 〉e ≈ 1
2πα(�̃)3 coth(βh̄�̃/2) + O(α2). (48)

We see that (48) is identical to (42) for the cubic spectrum function, J (ω) = παω3. However,
when T � T0, the multi-phonon damping rate becomes important and the corresponding
damping rate is [6]

〈�t 〉e = 1
2γu + γg (49)

where

γu = 1

2
�̃2 cosh(βh̄�̃/2)

(
βh̄

π

) ∞∑

n=odd

ϕn
0

n! An(βh̄�̃) (49a)

γg = 1

2
�̃2

(
βh̄

π

) ∞∑

n=even

ϕn
0

n! An(0) (49b)

with

An(βh̄ω) = π

βh̄

∫ ∞

−∞
dt eiωt 1

cosh(π t/βh̄)2n
. (49c)

Because (49) has no closed form, Würger proposed an interpolation method to
approximate (49) [6],

〈�t 〉e = 1
2γu + γg (50)

γu = πα�̃3 coth

(
1

2
βh̄�̃

)
sinh(ϕ0)

ϕ0
√

1 + 4ϕ0/π
(50a)

γg = 2πα�̃2(kBT/h̄)
cosh(ϕ0) − 1

ϕ0
√

1 + 4ϕ0/π
. (50b)
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Figure 2. Damping time and tunnelling time versus temperature. Curve 1: one-phonon damping
time from (48). Curve 2: the damping time with contributions from the first two terms of (49a)
and (49b). Curve 3: the damping time with contributions from the first three terms of (49a)
and (49b). Curve 4: the damping time according to the approximation (50). Curve 5: tunnelling
time from (43).

We plot the relation of damping time and reduced tunnelling time to temperature in
figure 2. From curves 1, 2, and 3, we find that as we consider more terms in (49), the result
moves downward to curve 4, which is the approximation of (49). Curve 5, the tunnelling time,
increases with the temperature, by about a factor of ten in the temperature range from T = 0 to
25 K. If we regard the inverse tunnelling time as the switching speed of a quantum gate, then it
means that the speed of a CPU made of such quantum gates is sensitive to temperature variation.
On the other hand, curve 4 shows that the damping time decreases rapidly as T increases, and
there is an intersection between curves 4 and 5. At that point the damping time is equal to the
tunnelling time, and the qubit cannot complete a switching cycle between 0 and 1 before the
damping occurs. According to figure 2, the corresponding temperature is about 18 K, and we
denote this threshold temperature T ∗. Therefore, at T � T ∗, coherent tunnelling is destroyed.

4. Conclusions

We present an approach based on Fermi’s golden rule to derive the one-phonon damping rate
of coupled quantum dots, in the case J (ω) ∼ ωs with s > 2, which is found to be in agreement
with that of Leggett et al derived within the NIBA [5]. The damping time at zero temperature is
estimated to be 6.5 × 10−5 (s), longer than Tanamoto’s estimate [4]. As temperature increases,
the multi-phonon effect becomes important, and a numerical estimate of the rate is carried out
based on the result of Würger [6]. Overall, according to the present work, double quantum dots
show interesting properties not far off the target for qubit application, but it also points out some
issues for future research. Firstly, there is a threshold temperature T ∗, i.e. 18 K, above which the
tunnelling time becomes longer than the damping time, which sets an upper temperature bound
for the operation of the coupled quantum dots as a qubit device. Secondly, the switching speed
of a quantum gate made of such double quantum dots is temperature sensitive, and reduces
substantially as the temperature is raised. Future study to optimize the structure towards a
higher T ∗ and a less thermal sensitivity may be worthwhile.
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